技術(shù)新聞更多>>
聯(lián)系方式
雙十字軸萬向節(jié)轉(zhuǎn)向傳動(dòng)軸的相位角影響分析(一)
雙十字軸萬向節(jié)轉(zhuǎn)向傳動(dòng)軸的相位角影響分析(一)
http://www.setsjjx.com 2018-11-13 編輯:青島瑞精機(jī)電設(shè)備有限公司
針對(duì)汽車用雙十字軸萬向節(jié)轉(zhuǎn)向傳動(dòng)軸的安裝空間受限,難以滿足等速傳動(dòng)條件,需調(diào)整相位角來減小轉(zhuǎn)速波動(dòng)的問題,采用空間幾何投影的方法,建立了雙十字軸萬向節(jié)軸承型號(hào)轉(zhuǎn)向傳動(dòng)軸的轉(zhuǎn)速比和轉(zhuǎn)角方程,并用等速條件驗(yàn)證了其正確性。定量分析了相位角對(duì)轉(zhuǎn)速比的影響,結(jié)果表明,當(dāng)兩個(gè)傳動(dòng)角相等,且相位角等于傳動(dòng)面夾角時(shí),輸出軸與輸入軸之間能實(shí)現(xiàn)等速傳動(dòng); 兩個(gè)傳動(dòng)角不相等時(shí),雙十字軸萬向節(jié)傳動(dòng)軸不能實(shí)現(xiàn)等速傳動(dòng),但是,當(dāng)相位角等于傳動(dòng)面夾角時(shí),輸出軸與輸入軸之間的轉(zhuǎn)速差最小。因此得出,傳動(dòng)軸相位角與傳動(dòng)面夾角相等且方向相反時(shí),為最佳相位角。然后,推導(dǎo)出了基于轉(zhuǎn)向系統(tǒng)硬點(diǎn)的最佳相位角求解公式,并編制了計(jì)算程序,通過實(shí)例驗(yàn)證了程序計(jì)算結(jié)果是準(zhǔn)確的。分析結(jié)論和所編制的程序?qū)ζ囖D(zhuǎn)向系統(tǒng)的設(shè)計(jì)以及其他類型萬向節(jié)的傳動(dòng)研究具有理論和實(shí)際意義。關(guān)鍵詞相位角等速傳動(dòng)十字軸萬向節(jié)轉(zhuǎn)向傳動(dòng)軸硬點(diǎn)。
Influence Analysis of Phase Angle of Double Cross Universal Joint Steering Transmission Shaft Li Ning1,2 Li Yourong1 Zhou Sizhu2 Zeng Yunyun2( 1 The Key Laboratory of Metallurgical Equipment and Control of Education Ministry,Wuhan University of Science and Technology,Wuhan 430081,China)( 2 Institute of Strength and Vibration of Mechanical Structures,Yangtze University,Jing zhou 434023,China)Abstract Aiming at the problem of the installation space of double cross universal joint steering transmissionshaft is limited,it is difficult to meet the condition of constant speed drive,and need to adjust the phase angle to reduce the rotating speed fluctuation,the rotating speed ratio and rotating angle equations of steering transmission shaft are established by means of spatial geometric projection method,and the equation is verified by using the constant velocity condition. The influence of phase angle on rotating speed ratio are quantitatively analyzed, the results show that the input shaft and output shaft can realize constant speed drive while two transmissionangle are equal and the phase angle is equal to the transmission plane angle,and the double cross universal joint transmission shaft can't realize the constant speed drive while two transmission angle are not equal. However,the speed difference of input shaft and output shaft is the smallest while the phase angle is equal to the transmission plane angle. Therefore,this is the best phase angle when phase angle is equal to transmission plane angle and their phases are reversal. Then,the optimal solution formula of phase angle is deduced basedon hard point of steering system and the computer program is compiled. The calculation result of the program is accurate by example verification. The conclusion and the program has theoretical and practical significance on system design of automobile steering and research on the transmission of other types universal joint.
Influence Analysis of Phase Angle of Double Cross Universal Joint Steering Transmission Shaft Li Ning1,2 Li Yourong1 Zhou Sizhu2 Zeng Yunyun2( 1 The Key Laboratory of Metallurgical Equipment and Control of Education Ministry,Wuhan University of Science and Technology,Wuhan 430081,China)( 2 Institute of Strength and Vibration of Mechanical Structures,Yangtze University,Jing zhou 434023,China)Abstract Aiming at the problem of the installation space of double cross universal joint steering transmissionshaft is limited,it is difficult to meet the condition of constant speed drive,and need to adjust the phase angle to reduce the rotating speed fluctuation,the rotating speed ratio and rotating angle equations of steering transmission shaft are established by means of spatial geometric projection method,and the equation is verified by using the constant velocity condition. The influence of phase angle on rotating speed ratio are quantitatively analyzed, the results show that the input shaft and output shaft can realize constant speed drive while two transmissionangle are equal and the phase angle is equal to the transmission plane angle,and the double cross universal joint transmission shaft can't realize the constant speed drive while two transmission angle are not equal. However,the speed difference of input shaft and output shaft is the smallest while the phase angle is equal to the transmission plane angle. Therefore,this is the best phase angle when phase angle is equal to transmission plane angle and their phases are reversal. Then,the optimal solution formula of phase angle is deduced basedon hard point of steering system and the computer program is compiled. The calculation result of the program is accurate by example verification. The conclusion and the program has theoretical and practical significance on system design of automobile steering and research on the transmission of other types universal joint.
十字軸萬向節(jié)能夠在實(shí)現(xiàn)角度變化的同時(shí)傳遞轉(zhuǎn)矩,其結(jié)構(gòu)簡單,磨損小,傳動(dòng)功率大,主、從動(dòng)軸間的傳動(dòng)夾角比較大。工程中,雙十字軸萬向節(jié)為了實(shí)現(xiàn)等速傳動(dòng),必須滿足以下3 個(gè)條件[1]: ①輸入軸、中間軸和輸出軸應(yīng)在同一平面內(nèi); ②中間軸兩端節(jié)叉的叉頭處于同一平面內(nèi); ③ 輸入軸與中間軸的夾角等于中間軸與輸出軸的夾角。由于汽車駕駛艙內(nèi)布局緊湊,轉(zhuǎn)向管柱和轉(zhuǎn)向器的安裝空間受到較多制約,轉(zhuǎn)向傳動(dòng)軸難以滿足以上3 個(gè)等速傳動(dòng)條件。文獻(xiàn)[2- 3]以單個(gè)十字軸萬向節(jié)為基礎(chǔ),研究了雙萬向節(jié)輸入和輸出角速度之間函數(shù)關(guān)系; 文獻(xiàn)[4 - 5]計(jì)算了虎克萬向節(jié)在任意轉(zhuǎn)角時(shí)的速比及轉(zhuǎn)角差,得出了不等速速比既不對(duì)稱、又不均衡的結(jié)論; 文獻(xiàn)[6]建立了雙聯(lián)虎克萬向節(jié)的運(yùn)動(dòng)方程,推導(dǎo)出雙聯(lián)虎克萬向節(jié)中間軸兩端的凸緣叉相位角和傳動(dòng)比的關(guān)系的理論計(jì)算公式。調(diào)整中間軸的相位角是一種有效減小轉(zhuǎn)速波動(dòng)影響的措施,但現(xiàn)有文獻(xiàn)并沒有系統(tǒng)研究相位角對(duì)系統(tǒng)轉(zhuǎn)速波動(dòng)影響和給出最優(yōu)相位角結(jié)論。如何選擇最優(yōu)的相位角成為轉(zhuǎn)向系統(tǒng)設(shè)計(jì)中的關(guān)鍵問題,因此,需要對(duì)雙十字軸萬向節(jié)轉(zhuǎn)向傳動(dòng)軸相位角對(duì)轉(zhuǎn)向穩(wěn)定性的影響進(jìn)行深入分析。
熱門型號(hào)
- NSK 32252軸承
- SKF PSM708560A51軸承
- NSK 230/750CAE4軸承
- IKO GE110ES軸承
- NTN KD5072100軸承
- NACHI NJ2316E軸承
- NACHI 3782/3720軸承
- FAG H3148X軸承
- NTN R166Z軸承
- SKF 23992CA軸承
- SKF NU1980EC軸承
- INA CSCF045軸承
- TIMKEN英制圓錐滾子軸承HM911244
- KOYO 30256軸承
- KOYO NUP1016軸承
- IKO NAG4919軸承
- NTN 7028DB軸承
- TIMKEN 120RU30軸承
- FAG HM30/800軸承
- TIMKEN XR889058軸承








